Preventive effects of nucleoprotein supplementation combined with intermittent loading on capillary regression induced by hindlimb unloading in rat soleus muscle

نویسندگان

  • Yusuke Hirayama
  • Ryosuke Nakanishi
  • Noriaki Maeshige
  • Hidemi Fujino
چکیده

Physical inactivity leads to muscle atrophy and capillary regression in the skeletal muscle. Intermittent loading during hindlimb unloading attenuates the muscle atrophy, meanwhile the capillary regression in the skeletal muscle is not suppressed. Nucleoprotein has antioxidant capacity and may prevent capillary regression. Therefore, we assessed the combined effects of intermittent loading with nucleoprotein supplementation on capillary regression induced by hindlimb unloading. Five groups of rats were assigned: control (CON), 7 days hindlimb unloading (HU), HU plus nucleoprotein supplementation (HU + NP), intermittent loading during HU (HU + IL), and intermittent loading combined with nucleoprotein supplementation during HU (HU + IL + NP). Seven days HU resulted in decrease in capillary number-to-fiber number (C/F) ratio accompanied with disuse-associated changes in fetal liver kinase-1 (Flk-1), a proangiogenesis factor, and thrombospondin-1 (TSP-1), an antiangiogenesis factor, in the soleus muscle. In addition, citrate synthase (CS) activity was decreased and protein level of superoxide dismutase (SOD)-2 was increased. Neither nucleoprotein supplementation nor intermittent loading prevented the decrease in the C/F ratio, whereas nucleoprotein supplementation combined with intermittent loading prevented the regression of capillary during unloading. Moreover, the levels of Flk-1, TSP-1, and SOD-2 protein and the CS activity were maintained up to control levels. These results suggested that nucleoprotein supplementation combined with intermittent loading was effective to prevent capillary regression induced by muscle atrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angio-adaptation in unloaded skeletal muscle: new insights into an early and muscle type-specific dynamic process.

With a remarkable plasticity, skeletal muscle adapts to an altered functional demand. Muscle angio-adaptation can either involve the growth or the regression of capillaries as respectively observed in response to endurance training or muscle unloading. Whereas the molecular mechanisms that regulate exercise-induced muscle angiogenesis have been extensively studied, understanding how muscle unlo...

متن کامل

Effects of dietary curcumin or N-acetylcysteine on NF-kappaB activity and contractile performance in ambulatory and unloaded murine soleus

Background: Unloading of skeletal muscle causes atrophy and loss of contractile function. In part, this response is believed to be mediated by the transcription factor nuclear factor-kappa B (NFκB). Both curcumin, a component of the spice turmeric, and N-acetylcysteine (NAC), an antioxidant, inhibit activation of NF-κB by inflammatory stimuli, albeit by different mechanisms. In the present stud...

متن کامل

Effects of dietary curcumin or N-acetylcysteine on NF-κB activity and contractile performance in ambulatory and unloaded murine soleus

BACKGROUND Unloading of skeletal muscle causes atrophy and loss of contractile function. In part, this response is believed to be mediated by the transcription factor nuclear factor-kappa B (NF-kappaB). Both curcumin, a component of the spice turmeric, and N-acetylcysteine (NAC), an antioxidant, inhibit activation of NF-kappaB by inflammatory stimuli, albeit by different mechanisms. In the pres...

متن کامل

Bowman-Birk inhibitor concentrate prevents atrophy, weakness, and oxidative stress in soleus muscle of hindlimb-unloaded mice.

Antigravity muscles atrophy and weaken during prolonged mechanical unloading caused by bed rest or spaceflight. Unloading also induces oxidative stress in muscle, a putative cause of weakness. We tested the hypothesis that dietary supplementation with Bowman-Birk inhibitor concentrate (BBIC), a soy protein extract, would oppose these changes. Adult mice were fed a diet supplemented with 1% BBIC...

متن کامل

Mechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscle.

The effects of mechanical unloading and reloading on the properties of rat soleus muscle fibers were investigated in male Wistar Hannover rats. Satellite cells in the fibers of control rats were distributed evenly throughout the fiber length. After 16 days of hindlimb unloading, the number of satellite cells in the central, but not the proximal or distal, region of the fiber was decreased. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017